sábado, 11 de junio de 2011

tercer corte

TERCER CORTE


TRANSISTOR BJT



La Figura 1 muestra el símbolo de un transistor bipolar o BJT (Bipolar Junction Transistor), con la nomenclatura habitual de sus terminales.
Figura 1: Símbolo y tipos de transistor BJT
Internamente, el BJT se compone de tres capas de silicio, según la configuración mostrada en la Figura 2.



 REGION DE CORTE

Como elemento básico para la discusión en este apartado se va a emplear el circuito de la Figura 5.
Figura 5: Transistor BJT polarizado en la región de corte
En el circuito de la Figura 5:
En este caso las dos uniones están polarizadas en inversa, por lo que existen zonas de deplección en torno a las uniones BE y BC. En estas zonas no hay portadores de carga móviles, por lo tanto, no puede establecerse ninguna corriente de mayoritarios. Los portadores minoritarios sí pueden atravesar las uniones polarizadas en inversa, pero dan lugar a corrientes muy débiles. Por lo tanto, un transistor en corte equivale a efectos prácticos, a un circuito abierto.
A partir de esta definición, se pueden deducir fácilmente los modelos matemático y circuital simplificados para este estado. El transistor BJT en la región de corte se resume en la Figura
Figura Modelo del en corte para señales de continua
Obviamente, en estos modelos no se tiene en cuenta el efecto de las corrientes de fuga de las dos uniones, y sólo son válidos para realizar una primera aproximación al comportamiento de un circuito.
EJEMPLO 1: Calcular las tensiones VBE, VBC y VCE así como las corrientes IB, IC e IE del circuito de la figura 7, cuando EB = 0 V.
Figura 7: Circuito del ejemplo 1
SOLUCIÓN: La base del transistor está conectada a la fuente a través de una resistencia RB. Puesto que la diferencia de potencial entre los extremos del generador es nula, no puede polarizarse la unión BE en directa, por lo que el transistor está en corte, es decir:
VBC = VBE - VCE = 0 - 10 = - 10 V
Pueden obtenerse los mismos resultados si se sustituye el transistor en el circuito por su modelo equivalente:

2.2 REGION ACTIVA NORMAL

Para facilitar el estudio y comprensión de los fenómenos que suceden cuando se polariza el transistor en RAN, se va a analizar en primer lugar el comportamiento del transistor en las situaciones descritas en la Figura 8 a) y b).
Figura 8: Transistor NPN.
En la Figura 8 a), como la tensión EC está aplicada al colector, la unión base-colector estará polarizada en inversa. A ambos lados de la unión se creará la zona de deplección, que impide la corriente de portadores mayoritarios. No existirá corriente de colector significativa, y el transistor se encontrará operando en la región de corte.
En el caso de la Figura 8 b), la fuente EB polariza la unión base-emisor en directa, que se comporta como un diodo normal, es decir, la zona P inyecta huecos en la zona N, y esta electrones en aquella. Si el dopado de la base es muy inferior al del emisor, la inyección de huecos será muy inferior a la de electrones, y se puede describir el proceso así: el emisor inyecta electrones en la base. Estos se recombinan con los huecos que provienen de la fuente de alimentación y se crea una corriente IB. En este caso el colector no entra en juego.
La operación en RAN se da cuando la unión BE se polariza en directa y la BC en inversa. Los tres puntos característicos de esta región de operación son:
  1. Corriente de colector no nula: conducción a través de la unión BC pese a que está polarizada en inversa.
  2. La corriente de base es muy inferior a la de colector.
  3. La corriente de colector es proporcional a la corriente de base.
Figura 9: Transistor NPN en RAN.
Conducción a través de la unión BC
En el circuito de la Figura 9 la unión BE se polariza en directa, mientras que si EC es mayor que EB, la unión BC estará en inversa, luego no debería circular corriente a través de esta última. Lo que sucede es que el emisor (tipo N) inyecta electrones en la base (tipo P), en la que los portadores mayoritarios son los huecos, y los minoritarios son los electrones. Como se explicó anteriormente, una unión PN en inversa bloquea el paso de mayoritarios, pero no de minoritarios (que constituyen la corriente de fuga en inversa). Por lo tanto, los electrones inyectados desde el emisor a la base, atraídos por el potencial positivo aplicado al colector, pueden atravesar la unión BC, y dar origen a la corriente de colector IC. Mediante el emisor, se inunda la base de electrones, aumenta drásticamente el número de portadores minoritarios del diodo base-colector, con lo que su corriente inversa aumenta también.
Así que la primera contradicción queda resuelta. El diodo BC no conduce realmente en inversa, sino que sus corrientes de fuga se equiparan con la corriente normal gracias al aporte de electrones que provienen del emisor.

jueves, 5 de mayo de 2011

TIPOS DE DIODOS

DIODOS RECTIFICADORES: Los diodos rectificadores son los que en principio conocemos, estos facilitan el paso de la corriente contínua en un sólo sentido (polarización directa), en otras palabras, si hacemos circular corriente alterna a través de un diodo rectificador esta solo lo hará en la mitad de los semiciclos, aquellos que polaricen directamente el diodo, por lo que a la salida del mismo obtenemos una señal de tipo pulsatoria pero contínua. Se conoce por señal o tensión contínua aquella que no varia su polaridad.

DIODOS DE CAPACIDAD VARIABLE ( VARICAP ): La capacidad formada en los extremos de la unión PN puede resultar de gran utilidad cuando, al contrario de lo que ocurre con los diodos de RF, se busca precisamente utilizar dicha capacidad en provecho del circuito en el cual se está utilizando el diodo. Al polarizar un diodo de forma directa se observa que, además de las zonas constitutivas de la capacidad buscada, aparece en paralelo con ellas una resistencia de muy bajo valor óhmico, lo que conforma un capacitor de elevadas pérdidas.






DIODO ZENER:Cuando se estudian los diodos se recalca sobre la diferencia que existe en la gráfica con respecto a la corriente directa e inversa. Si polarizamos inversamente un diodo estándar y aumentamos la tensión llega un momento en que se origina un fuerte paso de corriente que lleva al diodo a su destrucción. Este punto se da por la tensión de ruptura del diodo.












FOTODIODOS:Algo que se ha utilizado en favor de la técnica electrónica moderna es la influencia de la energía luminosa en la ruptura de los enlaces de electrones situados en el seno constitutivo de un diodo. Los fotodiodos no son diodos en los cuales se ha optimizado el proceso de componentes y forma de fabricación de modo que la influencia luminosa sobre su conducción sea la máxima posible.






DIODOS LED( LUMINISCENTES ): Este tipo de diodos es muy popular, sino, veamos cualquier equipo electrónico y veremos por lo menos 1 ó más diodos led. Podemos encontrarlos en direfentes formas, tamaños y colores diferentes. La forma de operar de un led se basa en la recombinación de portadores mayoritarios en la capa de barrera cuando se polariza una unión Pn en sentido directo.






Diodo Schottky o de barrera.- El diodo Schottky en lugar de construirse a partir de dos cristales semiconductores de  unión  tipo p-n, utiliza un metal como el aluminio (Al) o el platino (Pt) en contacto con un cristal semiconductor de silicio (Si) menos dopado que el empleado en la fabricación de un diodo normal. Esta unión le proporciona características de conmutación muy rápida durante los cambios de estados que ocurren entre la polarización directa y la inversa, lo que posibilita que pueda rectificar señales de muy altas frecuencias, así como suprimir valores altos de sobrecorriente en circuitos que trabajan con gran intensidad de corriente.










Diodo Laser
Los Diodos láser, emiten luz por el principio de emisión estimulada, la cual surge cuando un fotón induce a un electrón que se encuentra en un estado excitado a pasar al estado de reposo, este proceso esta acompañado con la emisión de un fotón, con la misma frecuencia y fase del fotón estimulante.





jueves, 28 de abril de 2011

EL DIODO

El diodo ideal es un componente discreto que permite la circulación de corriente entre sus terminales en un determinado sentido, mientras que la bloquea en el sentido contrario.



El funcionamiento del diodo ideal es el de un componente que presenta resistencia nula al paso de la corriente en un determinado sentido, y resistencia infinita en el sentido opuesto.

DIODO DE UNION PN

Actualmente los diodos se fabrican a partir de la unión de dos materiales semiconductores de características opuestas, es decir, uno de tipo N y otro de tipo P. A esta estructura se le añaden dos terminales metálicos para la conexión con el resto del circuito. En la Figura 3: se presenta el esquema de los dos tipos de diodos que se fabrican actualmente, el diodo vertical y el plano.


Formación de la unión PN

Supongamos que se dispone de un monocristal de silicio puro, dividido en dos zonas con una frontera nítida, definida por un plano. Una zona se dopa con impurezas de tipo P y la otra de tipo N (Figura 4). La zona P tiene un exceso de huecos, y se obtiene introduciendo átomos del grupo III en la red cristalina (por ejemplo, boro). La zona N dispone de electrones en exceso, procedentes de átomos del grupo V (fósforo). En ambos casos se tienen también portadores de signo contrario, aunque en una concentración varios órdenes de magnitud inferior (portadores minoritarios).
Figura 4: Impurificación del silicio para la obtención de diodos PN



En cada zona la carga total es neutra: por cada electrón hay un ion positivo, y por cada hueco un ion negativo, es decir, no existen distribuciones de carga neta, ni campos eléctricos internos. En el momento mismo de crear dos zonas de diferente concentración de portadores, entra en juego el mecanismo de la difusión. Como se recordará, este fenómeno tiende a llevar partículas de donde hay más a donde hay menos. El efecto es que los electrones y los huecos cercanos a la unión de las dos zonas la cruzan y se instalan en la zona contraria, es decir:
  • Electrones de la zona N pasan a la zona P.
  • Huecos de la zona P pasan a la zona N.




CONCLUSIONES

Este movimiento de portadores de carga tiene un doble efecto. Centrémonos en la región de la zona P cercana a la unión:
  1. El electrón que pasa la unión se recombina con un hueco. Aparece una carga negativa, ya que antes de que llegara el electrón la carga total era nula.
  2. Al pasar el hueco de la zona P a la zona N, provoca un defecto de carga positiva en la zona P, con lo que también aparece una carga negativa.
El mismo razonamiento, aunque con signos opuestos puede realizarse para la zona N. En consecuencia, a ambos lados de la unión se va creando una zona de carga, que es positiva en la zona N y negativa en la zona P.








SEMICONDUCTORES

Los "semiconductores" como el silicio (Si), el germanio (Ge) y el selenio (Se), por ejemplo, constituyen elementos que poseen características intermedias entre los cuerpos conductores y los aislantes, por lo que no se consideran ni una cosa, ni la otra. Sin embargo, bajo determinadas condiciones esos mismos elementos permiten la circulación de la corriente eléctrica en un sentido, pero no en el sentido contrario. Esa propiedad se utiliza para rectificar corriente alterna, detectar señales de radio, amplificar señales de corriente eléctrica, funcionar como interruptores o compuertas utilizadas en electrónica digital, etc.


Los átomos de los elementos semiconductores pueden poseer dos, tres, cuatro o cinco electrones en su última órbita, de acuerdo con el elemento específico al que pertenecen. No obstante, los elementos más utilizados por la industria electrónica, como el silicio (Si) y el germanio (Ge), poseen solamente cuatro electrones en su última órbita. En este caso, el equilibrio eléctrico que proporciona la estructura molecular cristalina característica de esos átomos en estado puro no les permite ceder, ni captar electrones. Normalmente los átomos de los elementos semiconductores se unen formando enlaces covalentes y no permiten que la corriente eléctrica fluya a través de sus cuerpos cuando se les aplica una diferencia de potencial o corriente eléctrica. En esas condiciones, al no presentar conductividad eléctrica alguna, se comportan de forma similar a un material aislante.



SEMICONDUCTOR DE SILICIO "TIPO-N"

Como ya conocemos, ni los átomos de silicio, ni los de germanio en su forma cristalina ceden ni aceptan electrones en su última órbita; por tanto, no permiten la circulación de la corriente eléctrica, por tanto, se comportan como materiales aislantes.

SEMICONDUCTOR DE SILICIO "TIPO-P"


Si en lugar de introducir átomos pentavalentes al cristal de silicio o de germanio lo dopamos añadiéndoles átomos o impurezas trivalentes como de galio (Ga) (elemento perteneciente al Grupo IIIa de la Tabla Periódica con tres electrones en su última órbita o banda de valencia), al unirse esa impureza en enlace covalente con los átomos de silicio quedará un hueco o agujero, debido a que faltará un electrón en cada uno de sus átomos para completar los ocho en su última órbita. En este caso, el átomo de galio tendrá que captar los electrones faltantes, que normalmente los aportarán los átomos de silicio, como una forma de compensar las cargas eléctricas. De esa forma el material adquiere propiedades conductoras y se convierte en un semiconductor extrínseco dopado tipo-P (positivo), o aceptante, debido al exceso de cargas positivas que provoca la falta de electrones en los huecos o agujeros que quedan en su estructura cristalina.

BOBINAS O INDUCTORES

LA BOBINA


Las bobinas también llamadas inductores, los cuales son componentes pasivos que almacenan energía eléctrica en forma de campo magnético y responden linealmente a los cambios de corriente. Por lo tanto, en presencia de una corriente continua constante se comportan como cortocircuitos.

En su forma más simple, una bobina está constituida por un alambre de cierta longitud enrollado en forma de hélice sobre un núcleo. Algunas veces incluyen también un carrete aislante intermedio llamado formaleta que aloja el arrollamiento y lo separa eléctricamente del núcleo.

La operación de las bobinas se basa en un principio de la teoría electromagnética, según el cual, cuando circula una corriente a través de un alambre, este produce a su alrededor un campo magnético.

CONDENSADORES

Los condensadores

Es un componente electrónico que almacena cargas eléctricas para utilizarlas en un circuito en el momento adecuado.
Está compuesto, básicamente, por un par de armaduras separadas por un material aislante denominado dieléctrico. La capacidad de un condensador consiste en almacenar mayor o menor número de cargas cuando está sometido a tensión.
Condensador básico

Símbolos del condensador

CARACTERÍSTICAS TÉCNICAS GENERALES

Capacidad nominal.- Es el valor teórico esperado al acabar el proceso de fabricación. Se marca en el cuerpo del componente mediante un código de colores o directamente con su valor numérico.
Tolerancia.- Diferencia entre las desviaciones, de capacidad, superiores o inferiores según el fabricante.
Tensión nominal.- Es la tensión que el condensador puede soportar de una manera continua sin sufrir deterioro.


Condensadores fijos
Son componentes pasivos de dos terminales. Se clasifican en función del material dieléctrico y su forma. Pueden ser: de papel, de plástico, cerámico, electrolítico, de mica, de tántalo, de vidrio, de poliéster, Estos son los más utilizados. A continuación se describirá, sin profundizar, las diferencias entre unos y otros, así como sus aplicaciones más usuales.

Cerámico
Los materiales cerámicos son buenos aislantes térmicos y eléctricos. El proceso de fabricación consiste básicamente en la metalización de las dos caras del material cerámico.
Se fabrican de 1pF a 1nF (grupo I) y de 1pF a 470nF (grupo II) con tensiones comprendidas entre 3 y 10000v.
Su identificación se realiza mediante código alfanumérico. Se utilizan en circuitos que necesitan alta estabilidad y bajas pérdidas en altas frecuencias.
     
Condensador cerámico de disco


Condensador cerámico de placa  




Electrolítico
Permiten obtener capacidades elevadas en espacios reducidos. Actualmente existen dos tipos: los de aluminio, y los de tántalo. El fundamento es el mismo: se trata de depositar mediante electrolisis una fina capa aislante. Los condensadores electrolíticos deben conectarse respetando su polaridad, que viene indicada en sus terminales, pues de lo contrario se destruiría.



Símbolo de un condensador electrolítico y de tántalo 

Condensador electrolítico
 
Condensador de tántalo 






Condensadores variables
Constan de un grupo de armaduras móviles, de tal forma que al girar sobre un eje se aumenta o reduce la superficie de las armaduras metálicas enfrentadas, variándose con ello la capacidad.
El dieléctrico empleado suele ser el aire, aunque también se incluye mica o plástico.




REFLEXIONES
  • LOS CONDENSADORES MANTIENEN UNA CARGA ELECTRICA POR UN DETERMINADO TIEMPO PARA SER UTILIZADA EN MOMENTO INDICADO EN EL CIRCUITO.
  • LA UNIDAD DE LOS CONDENSADORES SE MIDE EN FARADIOS (F)
  • LOS CONDENSADORES SE COMOPONENTES DE ESENCIALMENTE DE DOS CONDUCTURES QUE SON AISLADOS POR UN DIELECTRICO.
  • LOS CONDENSADORES DE MATERIAL CERAMICOS NO TIENEN POLARIDAD.
  • A MAYOR CAPACIDAD DEL CONDENSADOR MAYOR SERA LA DURACION DE LA CARGA ELECTRICA EN ESTE.

jueves, 14 de abril de 2011

LEY DE KIRCHOFF

a. Ley de Kirchhoff : Ley de las corrientes o de los nodos

En un nodo, la suma de las corrientes entrantes es igual a la 
suma de las corrientes salientes.
 

- Es decir, en un nodo no se acumula carga.





ley1.JPG




2a. Ley de Kirchhoff : Ley de las tensiones, o ley de las mallas
- La suma algebraica de las tensiones en una malla cerrada es nula.





ley2.JPG

About Me

Mi foto
Fundacion de Educación Superior San Jose Ingenieria de Sistemas

Seguidores

Adsense Banner